STATISTIQUE ET PROBABILITES


Si la théorie des probabilités a été originellement motivée par l’analyse des jeux de hasard, elle a pris aujourd’hui une place centrale dans la plupart des sciences. Tout d’abord, de par ses applications pratiques : en tant que base des statistiques, elle permet l’analyse des données recueillies lors d’une expérience, lors d’un sondage, etc. ; elle a également conduit au développement de puissants algorithmes stochastiques pour résoudre des problèmes inabordables par une approche déterministe ; elle a aussi de nombreuses applications directes, par exemple en fiabilité, ou dans les assurances et dans la finance.


 D'une côté plus théorique, elle permet la modélisation de nombreux phénomènes, aussi bien en sciences naturelles (physique, chimie, biologie, etc.) qu’en sciences humaines (économie, sociologie, par exemple) et dans d’autres disciplines (médecine, climatologie, informatique, réseaux de communication, traitement du signal, etc.). Elle s’est même révélée utile dans de nombreux domaines de mathématiques pures (algèbre, théorie des nombres, combinatoire, etc.) et appliquées (EDP, par exemple). Finalement, elle a acquis une place importante en mathématiques de par son intérêt intrinsèque, et, de par sa versatilité, possède un des spectres les plus larges en mathématiques, allant des problèmes les plus appliqués aux questions les plus abstraites. Le concept de probabilité est aujourd’hui familier à tout un chacun. Nous sommes constamment confrontés à des événements dépendant d’un grand nombre de facteurs hors de notre contrôle ; puisqu’il nous est impossible dans ces conditions de prédire exactement quel en sera le résultat, on parle de phénomènes aléatoires. Ceci ne signifie pas nécessairement qu’il y ait quelque chose d’intrinsèquement aléatoire à l’oeuvre, mais simplement que l’information à notre disposition n’est que partielle. Quelques exemples : le résultat d’un jeu de hasard (pile ou face, jet de dé, roulette, loterie, etc.) ; la durée de vie d’un atome radioactif, d’un individu ou d’une ampoule électrique ; le nombre de gauchers dans un échantillon de personnes tirées au hasard ; le bruit dans un système de communication ; la fréquence d’accidents de la route ; le nombre de SMS envoyés la nuit du 31 décembre ; le nombre d’étoiles doubles dans une région du ciel ; la position d’un grain de pollen en suspension dans l’eau ; l’évolution du cours de la bourse ; etc.




https://drive.google.com/open?id=1s3zhx7XPsBDslYFZZiBpNi2tI9p8fSHP